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Abstract 

The fundamental ideas of representation given in a 
preceding paper [Giacovazzo (1977). Acta Cryst. A 33, 
933-944] are generalized further. Some algebraic 
properties of structure seminvariants are stated and 
their importance for practical applications is discussed. 
The concept of a generalized first phasing shell is 
introduced: it allows in some cases a better estimation 
of the seminvariants. 

I. IntroductionS" 

Hauptman (1975) first fixed the idea of defining a 
sequence of sets of reflections (sequence of nested 
neighbourhoods) each contained within the succeeding 
one and having the property that the cosine invariant or 
seminvariant may be estimated via the magnitudes 
constituting any neighbourhood. A practical appli- 
cation of the idea had already been performed 
independently by Giacovazzo (1975) who calculated in 
P1 the one-phase s.s.'s via the magnitudes in their 
second neighbourhoods. Heuristic methods of finding 
sequences of nested neighbourhoods for certain s.i.'s or 
s.s.'s have been presented by Hauptman (1976). 
However, different sequences for the same s.s.'s exist. 

A more general method for estimating s.s.'s was 
described by Giacovazzo (1977a, 1977b). The method 
is able, for any s.s., q~, to arrange in a general way the 
set of reflections in a sequence of subsets whose order is 
that of the expected effectiveness (in the statistical 
sense) for the estimation of ~. In particular, the theory 
introduces the idea of the upper representations of a s.s. 
and organizes the set of reflections in a sequence of 
subsets, each contained in the succeeding one, which 
does not coincide in general with the corresponding 
nested-neighbourhood sequence given by Hauptman. 
These subsets were called phasing shells in order to 
stress this difference. 

* Part I: Giacovazzo (1977). 
~" Abbreviations: s.i. = structure invariant, s.s. = structure 

seminvariant. 
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In general, a neighbourhood is an arbitrary (but 
appropriate) subset of a phasing shell. For instance, for 
P1 17 and 48 magnitudes are in the first phasing shells 
of the three-phase s.s. and the four-phase s.s. respec- 
tively. The first two neighbourhoods given by 
Hauptman (1976) for the same s.s.'s are subsets 
constructed by means of 13 and 24 magnitudes 
respectively. Again, 22 and 67 magnitudes are con- 
tained in the second and third phasing shells of a 
quartet invariant, while subsets with 13 and 21 
magnitudes are in the third and fourth Hauptman's 
(1977a) neighbourhoods. In some cases magnitudes 
contained in Hauptman's neighbourhoods are not 
merely subsets of suitable phasing shells. For instance, 
the following six magnitudes (Hauptman, 1976) 

IE2h I, IEhi, Ifk I, IEh+_kl, IE2kl 

are in the second neighbourhood of the one-phase s.s. 
q0 = ~02h in Pi .  For the same s.s. the first phasing shell 
is constructed by means of the seven.magnitudes-.-: 

. .  

IE2hl, IEhl, IEkl, Ifh_+kl, IE2h+_k I, 

among which I f2k[ does not appear. 
Methods of neighbourhoods and representations 

have quite different approaches to phase estimation. 
When methods were applied to the same practical 
cases, they required completely different procedures 
and did not give the same estimations. The case of 
two-phase s.s.'s is very instructive: Green & Hauptman 
(1978a,b) and Hauptman & Green (1978) used the 
neighbourhood concept and derived some conditional 
probability distributions for two-phase s.s's in P21. 
Different conditional probability distributions were 
suggested to Giacovazzo (1979) by the method of 
representations. In general, the number of reflections 
simultaneously involved in these distributions is much 
larger than that involved in distributions suggested by 
the neighbourhood method. A practical effect is that 
the representations method requires peculiar pro- 
cedures for phase estimation (see Giacovazzo, Spagna, 
Vickovic & Viterbo, 1979). 

An important quality of the representation theory is 
that it largely exploits space-group algebra. In fact, 
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probability distributions and related conclusive for- 
mulae can be obtained which hold in any space group. 
This is quite useful from the practical point of view, 
because programs for automatic computing with 
general validity can be written. 

So far the method has been applied to: (a) estimation 
of quartet invariants in any space group via their first 
representations (Giacovazzo, 1976; Busetta et al., 
1980); (b) estimation of one-phase s.s.'s via their first 
and second representations (Giacovazzo, 1978a; Burla 
et al., 1980); (¢) estimation of two-phase s.s.'s via their 
first representations (references already quoted). Prac- 
tical tests were successful and proved that the method 
is an effective tool for phase estimation. 

Basic ideas of representation theory were described 
in Giacovazzo's  (1977b) paper I. However, not all the 
theoretical aspects were developed, and some pro- 
positions were not algebraically proved. The first aim of 
this paper is to complete the theoretical development 
begun in I. The second is to develop the theory further 
so as to make practical applications easier and the 
probabilistic estimations of s.s.'s more reliable. 

2. Some basic definitions in representations theory 

In order to make the reading of this paper easier we 
recall some basic definitions given in I to which we 
often refer in this paper. We again denote by Cp = 
(Rp, Tp), p = 1 . . . .  , m, the m symmetry operators for a 
space group of order m (Rp rotational component, Tp 
translational component). Furthermore,  

t~ : A l { O h  ' + A2~oh 2 + . . .  + An~Oh" (1) 

will be the general expression for a s.i. or a s.s. 

2.1. The f irst  representation o f  a s.i. q~ 

If the crystal symmetry is higher than triclinic, a 
number of symmetry operators may be found in 
favourable cases such that one or more s.i.'s, 

7tl = A 1 q~h', + A 2 ~/gh~ + " ' '  + A,, (~h:, 

: A l q T h ,  R, + A2~Oh2R, + . . .  + AnqTh. R~, 

arise in which at least one of the hj vectors does not 
coincide with bj. Since 

(PhR = (Ph -- 2~rhT, (2) 

~u I -- (p is a constant if the geometrical form of the 
structure factor has been fixed. The collection of the 
distinct s.i., ~F l, obtained when R s, R t ,  . . . ,  R v vary over 
the set of the m rotation matrices of the actual space 
group is defined to be the first representation of ~ and 
will be denoted by { 7 t} r 

The first phasing shell is given by the collection of 
magnitudes which are basis magnitudes (i.e. Eh,, ..., 
Eh,) or cross magnitudes of at least one s.i., W1. In their 
turn, the cross vectors of any s.i., ~1, are defined by the 
expressions 

m 1 h]  + m 2 h' 2 + . . .  + m n h" (mp  = 0 , . . . ,  A p ) ,  

which are all linear combinations of the vectors h~, 
h !  t , __  2, ..., hn with integer coefficients 0 < mp _< Ap if Ap > 
0; if Ap < 0, then the integer coefficients mp satisfy Ap 
<_mo<_O. 

The first phasing shell is denoted by {B} 1. 

2.2. The upper representations o f  a s.i. @ 

For any ~u 1 belonging to / ~u}l, let us construct the 
s.i.'s 

~2  = ~'/1 + (Pk - -  (Pk, 

where k is a free vector. The collection of the s.i. ~2's is 
denoted by { ~}2 and is the second representation of q~. 
The second phasing shell of q0 is the collection of 
magnitudes which are basis or cross magnitudes of at 
least o n e  ~/2. L i k e w i s e ,  ~/3 = ~[t/2 + ~Ol - ~01, etc. 

The procedure and the definitions are recursive. 
The definitions given above are quite clear. Thus, the 

identification of the various phasing shells for any s.i., 
q~, is a straightforward task. 

2.3. The f irst  representation o f  a s.s. q~ 

It has been known for some time (Hauptman & 
Karle, 1953) that one-phase s.s.'s can be estimated via 
one or more special triplet invariants. Giacovazzo 
(1977b) first fixed the idea that, whatever the s.s. may 
be, it can be estimated via one or more s.i.'s and that 
with respect to the procedures for phase estimation, the 
s.s.'s should be split into two classes. 

Let us suppose that ~,  as given by (1), is a s.s.: 
if there exists a phase tPh and symmetry operators C s, 
C t, ..., C r, Cp, Cq such that 

~/1 = A l q T h ,  R~ + A2qTh2 R, + "'" + AnqTh. R~ + (PhR. - -  ~/ThRq 

(3) 
is a s.i., then q~ is, by definition, a s.s. of the first rank. 
Then ~ ' ,  defined by 

t~' = A l ( O h t  R, + A2qTh2 R, + " "  + A n  qTh. R,, 

is also a s.s. of  the first rank. We note that, because of 
(2), 7' 1 differs from ~ by a constant which arises 
because of the translational symmetry.  

Suppose now that q~ is a s.s. for which (3) does not 
hold. If two phases ~0h and ~0~ and four symmetry 
operators Cp, Cq, C i, Cj exist in principle (I E~,I and 
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I Etl may or may not be experimentally measured) such 
that 

¥/1 = (~' + q T h R , -  ~0hRq + qTIR,-  (~IRj 

= A l ~ h t  R, + " "  + an~h,,Rv + (ffhRp - -  (~hRq 

+ ~0,R, -- ~0m, (4) 

is a s.i., then q~ is said to be a s.s. of the second rank. 
The first representation of a s.s. of the first rank, q~, 

is the collection of the 7tl'S as given by (3). If q~ is a s.s. 
of the second rank, the collection of the ~l 's as given 
by (4) is the first representation of q~. In both cases the 
first representation of q~ will be denoted by {q~}~, and 
{B }l will be the collection of the I EI magnitudes which 
are basis or cross magnitudes of at least one s.i. 71, 
{ ~'},. 

It is now clear that n-phase s.s.'s of first rank will be 
estimated via their first representation, by means of a 
collection of (n + 2)-phase s.i.'s; on the other hand, 
n-phase s.s.'s of second rank will be estimated by 
means of a collection of (n + 4)-phase s.i.'s. 

2.4. The upper representations of  a s.s. 

The first representation of any s.s., q~, is a collection 
of s.i.'s; therefore the rules for constructing the upper 
representations of q) do not differ from those described 
for the case in which q~ is a s.i. 

Unlike s.i.'s, it is not always straightforward, for any 
s.s. q~, to define its first phasing shell; however, when 
{B}~ is known, {B }~ is always readily obtainable. 

3. A l g e b r a i c  propert ies  o f  the s.s.'s o f  first rank  

The effective use of s.s.'s in direct procedures for phase 
solution requires that: (a) the linear combinations of 
phases which are s.s.'s are identified; (b) the rank of 
these s.s.'s is recognized; (c) the first phasing shell is 
readily found. 

The operations for (a) do not present any difficulty. 
In fact, the algebraic conditions to be satisfied were 
clearly stated by Hauptman & Karle (1953, 1956, 
1959) and were listed in a paper by Giacovazzo (1974). 
Although a table of s.s.'s of first rank for any 
Hauptman-Karle  group has been given in I, the 
operations for (b) can present some difficulties. In 
particular, in I the algebraic criteria which led to the 
table were not given. The operations for (c) can present 
major difficulties. In fact, in I we only described some 
heuristic ways for solving this problem for one and 
two-phase s.s.'s of the first rank. 

We present in this section some general algebraic 
properties which characterize the s.s.'s of first rank. 
Algebraic properties of s.s.'s of the second rank will be 
described in §6. We emphasize the fact that these 

properties are extremely useful for practical ap- 
plications because they are the theoretical support for 
general programs devoted to the automatic estimation 
of s.s.'s in all the space groups. 

Proposition 1. Let q~u,, q~u: .... ~0u. be a set of phases 
for which the system 

h 1 - h 2 R/~ = u 1 

h 2 -- h 3 Ry = u 2 

h 3 - -  h a R~ = u 3 

(5.1) 
(5.2) 

(5.3) 

(5.n-l) 

(5.n) 
hn_ I - hnR ~ ---- a n _  1 

h n --  h 1 R . =  u n 

holds. Then qb = ~0., + ~u~ + .-. + (0.. is a s.s. of the first 
rank. 

Proof. We multiply (5.2) by R~, (5.3) by RyRp, ..., 
and we obtain 

h I - h 2 R/~ --  u 1 (6 .1)  

h 2 Rp - -  h 3 RyRp = u 2 R  p (6.2) 

h3RyR/~-- h4R~RyR/~ = u3 R~,R p (6.3) 
: 

h n R ~ . . . R / ~ - - h l R .  R v . . . R p = u n R ~ . . . R / ~ .  (6 .n)  

The addition of (6) gives 

U 1 + u 2 R  fl + u 3 R y R  ~ + . . .  + u n R v . . . R  p 

- - h l ( i  --  R , R ,  . . . .  R~) = 0, 

which, compared with (3), proves the statement. 
Proposition 2. If ~0,, + (Pu2 + ... + (P,. is a s.s. of first 

rank, there are at least n vectors hl, h2, ..., h n and n 
matrices R,,, Rp, Ry, ..., R~ such that system (5) holds. 

Proof. By hypothesis, at least n + 2 rotation matrices 
R,, R~,, R¢ . . . . .  Ry, Rp, Rq and a vector h exist such that 

u l R ,  + u2R~, + u 3 R ¢ +  ... + UnRy + hRp--hRq = 0. 
(7) 

Writing 

R ~ , =  R ~ R ,  

R¢ = R~R~R,1  

i 

Ry = R ~ . . . R ~ R p R ~ ,  

we may write (7) as 

u l R ~  + u 2 R p R  ~ + u 3 R ~ R p R  ~ + ... 

+ U n R ~ . . . R ~ R a R  . = h ( R q -  Rp). (8)  

A more useful form of (8) is 

u l R  . + u 2 R ~ R  . + u 3 R y R p R  ~ + ... 

+ u ~ R v . . . R y R p R , =  h l ( R , 1 - -  R~  ~ Rp), (9)  
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where ht and R0 are a suitable vector and matrix 
respectively for which h~ = hRo, R q = RoR~. We 
observe now that for fixed ul, h~ and R~ it is always 
possible to find a vector h 2 such that 

h t - -  h 2 R ,  = u r (10 .1 )  

Again, for fixed u 2, Ry and h2, it is always possible to 
find a vector h 3 such that 

h z --  h 3 R~ = u 2. (10 .2 )  

Again, for fixed u,,_~, R, and h,,_~ it is always 
possible to find a vector h,, such that 

hn_ l --  hnR~ = u~_ r ( 1 0 . n - l )  

Lastly, for fixed u,,, R~ and h n it is always possible to 
find a vector k such that 

h n -- kRq = u n. (10.n) 

If (I0.1), (10.2), ..., (10.n) are first multiplied by R,, 
RpRq . . . .  , R, ... RyR,R~ respectively and then 
summed, one obtains 

u~R~ + u E R ~ R  ~ + . . .  + u n R  v . . . R y R / ~ R ~  

= h I R,l --  k R , ~ R , . . .  R y R , R , .  (11)  

Comparison of (11) with (9) gives 

h t R ~  ~ Rp = k R ~ R , . . . R v R / ~ R ~ .  

In other words, k denotes a reflexion symmetry 
equivalent to h~, so that (10.n) may be written as 

h , , -  h x R  ~ = u, ,  (12)  

1 I 1 1 1 where R~, = R~ RpR~ R~ R~- . . .R7 .  The proposition 
is now proved because (10.1), (10.2), ..., (10.n) form a 
system like (5). 

Propositions 1 and 2 ensure that the more general 
expressions for the s.s.'s of first rank are: 

(a) q~ = (o8 = (Ph(I- Ra), for one-phase s.s.'s; 

(b) • = ~Pu, + ~Pu, = ~Ph,- h2R ~ ÷ (~h 2 - h , R  a , for 
two-phase s.s's; 

( e )  0 = (Put ÷ (Pu 2 ÷ (~u 3 = (Ph,-h2R ~ ÷ (Ph2-h3R:~ ÷ ~Ph3-h,R a 
for three-phase s.s.'s; 

(d r )  ¢~ = (Put @ (Pu 2 @ (~.3 @ ~Pu. = ( P h , -  h2R ~ ÷ (~h 2 - h,R~, @ 

(ph 3 _ h4Rs @ (Ph4_h ,R  f o r  four-phase s.s.'s; etc. 

This result is not trivial. In fact it ensures that, whatever 
the space group may be and for any s.s. of the first 
rank, q~, the set of vectors {U} = (u~, uz,. .... u,) can be 
expressed in terms of a fundamental set {h} = (h~, hz, 
..., h~). Provided we are able, for any q~, to express in 
terms of {h} the basis vectors of any T~ ~ { ~u}~, then 
the conditional distribution P(OI {B}a) may in principle 
be calculated in a form valid for all the space groups. 

For example, • = ~00, = q~h~l _ R.) is a s.s. of the first 
rank in any space group which contains the rotation 

matrix R,. Furthermore, T1 = ~0h,_ R.) - -  ~0h ÷ ~ h R .  is 
the general expression of the s.i.'s, ~i, belonging to the 
first representation of qs. So the joint probability 
distribution, P(Eh¢~_ R.), {Eh}), may be used in order to 
estimate ¢Pu, in any space group via its first represen- 
tation. From them the conditional distribution P(~0,,] 
I E,,,I, {IEhl }) may be derived. This conditional distri- 
bution may be specialized for a given space group just 
by assigning, according to point-group symmetry, the 
actual values of R,  and of the I Eh I's. 

The problem is now that of obtaining, for a given s.s. 
of first rank, q~, the set {h} from the set {U}. 
Multiplying (5.1) by I, (5.2) by R~, (5.3) by RyRp, ..., 
(5.n) by Rv...RyR~ and summing, one finds 

h i ( l - -  R , R ~ . . . R y R ~ )  = u I + u / R ~  + u 3 R ~ R  p 

+ ... + u~R~. . .RrR, . (13.1)  

In a similar way one can obtain 

h2(l  --  R p R , , R ~ . . .  R 6 Ry) 

= u  2 + u 3 R y +  u 4 R 6 R y  + . . . +  u n R ~ . . . R 6 R  ~ 

+ u I R~R~... R6Ry, (13.2) 

h3(I -- RyRaRaR~. . .  R6) 

~ - - -  U 3 ÷ U 4 R 6  + . . .  + u n R v . . .  R6 

+ u~R~ R ~ . . . R 6  + u 2 R , R ~  R ~ . . . R 6 ,  (13 .3 )  

hn(l  - -  R v . . .  R 6 R ~ R a R , ~ )  

= u,, + u~R,,  + u 2 R , R ,  + . . .  + U n _ l R  v_ 1 . . .  

× R6 RyR~R,~.  (13.n) 

Equations (13) yield the set {h} from the set {U}. 
However, (I -- R i ... R j) may be a singular matrix. 
Therefore, depending on the values of ul, u2 . . . . .  un, R,,, 
Rp, ..., R v, the set (hi, h2, ..., h~) may not be uniquely 
determined by (13); instead, one or more sets (h~, 
h 2 . . . . .  hn) may exist which satisfy (13), and consequen- 
tly (5) too. The more general way of dealing with this 
problem is to introduce the concept of the reflexive 
generalized inverse of a matrix (see, for example, 
Ben-Israel & Greville, 1974). 

Definition. If A is an m x n matrix, an n x m matrix 
A* is said to be a reflexive generalized inverse of A 
provided AA*A = A and A*AA* = A*. 

Property. A system of linear equations 

Ax = b (14) 

has a solution if and only if 

AA*b = b. (15) 

Furthermore, if (14) has a solution then 

x = A*b + (I - A ' A )  z, (16) 

where z is an arbitrary vector. 
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From a formal point of view, (16) marc be easily 
applied to (13): i.e. for (13.1), 

A = ( I -  R~Ry...  P,~ fi,,), 

b =  u~ + u2R ~ + . . .  + u . R ~ . . .  R y R , .  

In our case, however, A and b are an integral matrix 
and vector respectively; furthermore, we are interested 
only in integral solutions. 

Hurt & Waid's (1970) theorem for diophantine 
systems may be used, according to which, if A and b 
are integral, then (14) has an integral solution if and 
only if 

A*b =-- 0 (rood 1). =~' (17) 

In this case the general integral solution of (14) is given 
by (16), where z is an arbitrary integral vector. With 
this background, we are able to obtain, from (13), the 
general expressions for the vectors h~, hE, . . . ,  h n, given 
ul, u2 . . . . .  u,. Furthermore, (13) suggests, for a given 
s.s. of the first rank, ¢ ,  the expression of the s.i. Wt E 

(Put -k (fiuzR~ "+- (fiu, RrR~ -+- . . .  2r- (fiu, R . . .R;R~ 

--(fihl-+- (fihIR,~R~....RrR~, (18.1) 

(fine + (fie 3 gr  -k (flu4 R8 Ry "+- " ' "  @ (finn R . . .  R~ R r 

-]- (fiut R o R o . . . R s R y -  (Oh 2 q- (fih2R~R,,R~...R~R>. , 

(18.2) 

(fi.., + (fi~,R, + . . .  + (fiu. ao...R, + (fiu~RoR ... R~ 
+ (finER/; R,,R~... R, - -  (fih 3 "3t- (fih 3 R~R~; R~R,. . .  R~, 

• (18 .3)  

--(fih. +(fih. R ...R6RyR~R ~. v 
(18.n) 

It is now a trivial task to write down the magnitudes in 
the first phasing shell of q~: one only needs to write 
down the set of magnitudes which are basis or cross 
magnitudes of at least one s.i. (18). 

We note again that every (13./) can be satisfied by 
more than one vector h r If we suppose that for every 
(13.i) we know the complete set of solutior~s {h~}, then 
the problem of finding a particular set (h,: h 2 . . . .  , h,,) 
which satisfies system (5) is trivial. In fact, if a value h~ 
E {h~} is arbitrarily chosen, then h 2 E {h 2} is fixed by 
(5.1), h 3 by (5.2), etc.  The following theorem enables 
one to obtain the complete set of solutions'~(h, h 2, ..., 
h,) which satisify (5). 

Proposition 3. Let h~, h 2, ..., h n be a solution of the 
system (5) for fixed matrices ILl, R~ . . . . .  R~. Then also 
h~ + k ,  h2 + k2,..., hn + kn satisfy (5) provided 

k~(I --  R,~ R ~ . . .  Rr R#) = 0, 

k2(I --  R , R ,  R ~ . . .  R~Rr)  = 0, "" 
..r 

kn(l  --  R ~ . . .  R ~ R r R # R , )  = 0 .  

Proof. Because of the hypothesis, h~ + k~, h 2 + k 2, 

..., h n + k, is a solution of (5) if 

k 1 - kER #=  0 (19.1) 

k 2 -- k3R r = 0 (19.2) 

k 3 --  k4R,~ = 0 (19.3) 

k n -- k I R,  = 0. (19.n) 

Multiplying (19.1) by I, (19.2) by Rp, (19.3) by RyRp, 
..., (19.n) by Rv.. .  RyRp and summing, one finds 

k l ( I -  RaRv ... RyRp)=  O. 

Analogous conditions for k2, k 3 , . . . ,  k n are obtainable in 
a similar way. 

4. First-rank seminvariant  modulus  vectors  

The results in §3 enable us to describe a simple 
procedure which singles out the algebraic conditions 
which characterize the s.s.'s of the first rank. Without 
any loss of generality, we will first treat one-phase s.s.'s 
of the first rank: the results however are general• 

According to §§2 and 3, (fin is a s.s. of first rank if a 
vector h and a rotation matrix R,, exist such that A,, h = 
(I - Rn)h = H. Let us try to solve the system with 
respect to h for any R,, in P312. For this space group 
the symmetry relations are 

( x y z ) ;  (S' x - y z); (y - x ~z); 

@2~); (x x - y ~); O' - x y~). 

The matrices A n are given by 

1 i 0 2 1 

A 2 =  1 2 0 ,  A3=  i 1 

0 0 0 0 0 

°Fi 
0 ,  

0 

A 4 11il 1 1 , 

0 0 

A 5 I 0 2 0 ,  

0 0 2 

2 0 0 

A6=  i 0 0 

0 0 2 

and their generalized inverses by 

A * = - 1 / 3  1/3 ; A~'= 

O 0 

1/3 

1/3 

0 

-1/3 
2/3 

0 
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A * =  

1 0 0 

0 0 0 

0 0 1/2 

; A * =  

I°1  I 
A * =  0 0 . 

0 0 1/2 

00:j 
- 1  0 ; 

0 0 1/2 

Let us apply conditions (15) and (17) to A 2. Writing H 
-- (H  l, H E, H3) and h -- (hi, h2, ha) , we obtain 

A 2 A* H = 

1 0 

0 1 

0 0 

0 

0 x 

0 

n 1 

H 2  

H 3  

n 1 

= n 2 

0 

n 1 

= n 2 

A* H = [(2H~ + H2)/3 , (--H x + H2)/3 , 0] 

-- 0 mod (1, 1, 1), 

from which 

( H  1 - -  n 2 ,  n 3 )  = 0 mod (3,0). 

The following generalized solution arises from (16) 

h = [(2Ht + H2)/3 , ( - -n l  + H2)/3, l] , 

where l is a free index. 
Let us now apply conditions (15) and (17) to A3,.. . ,  

A,. We obtain: 

for A 3 (H I -- H2, H3) ~ 0 mod (3,0), 

h = [ ( H t -  H2)/3 , ( n  I + 2H2)/3, l]; 

for h 4 ( H  l - -  n 2 ,  H 3 )  ---- 0 mod (0,2), 

h = (H  I -- k, k, H3/2); 

forA 5 (2H~ + H 2, H3) -- 0 mod (0,2), 

h = (h, -H~,  H3/2); 

for A 6 (H  1 + 2H2, H3) _-- 0 mod (0,2) 

h = (- -H2,  k, H 3/2).  

It may be concluded that q~ is a s.s. of first rank in 
P312 if H or any symmetry equivalent satisfies 

(H~ -- HE, Ha) -- 0 mod (3,0) or (0,2). (20) 

In an analogous way it may be shown that q~ = (flu + (fly 
is a s.s. of first rank in P312 if at least a pair of matrices 
Rp and Rq exist such that uRp + vRq ---- (HpHE,H3) 
satisfies condition (20). 

The use of these results in practical applications may 
be simplified if, by a procedure analogous to that 
introduced by Hauptman & Karle  (1953, 1956), we 
consider (H  l - -  n 2 ,  n3) as the first-rank vector 
seminvariantly associated with H, and (3,0), (0,2) as 
the first-rank seminvariant modulus vectors. 

For example, (H,H2,H3) is the first-rank vector 
seminvariantly associated with H for the symmetry 

class 222; (2,2,0), (2,0,2) and (0,2,2) are the first-rank 
seminvariant modulus vectors. A short list of the first- 
rank vectors seminvariantly associated with H and of 
the first-rank seminvariant modulus vectors was given 
in the Appendix of paper I. 

5. Numerical applications 

In order to clarify the algebraic procedures described 
above and the role of point-group symmetry we give 
some numerical examples in P1, P21, P212121 and 
Pmmm. The notation of symmetry operators in P212~21 
and Pmmm follows the following. 

P21212x: (x,y,z), (~C, ½ + y, ½ -  Z), ( ½ -  X, y, ½ + Z), 

(½ + x, ½-y ,  

Pmmm: (x,y,z), (Yc,p,~), (Yc,p,z), (x,p,~), 

(Sc,y,z), (x,p,z). 

Example 1. ~ = (fi,, = (fi60o is a s.s. of first rank in 
P2 r According to previous results we can write u = h(l 
- RE). For A = A 2 = (I - RE), (16) gives 

h =  A~' u + ( I -  A~' A2) z, (21) 

where z is an arbitrary integral vector and 

1/2 0 0 I 
0 0 0 . 

0 0 1/2 

Then, h = (300) + (0k0) = (3k0), where k is a free 
index. According to (18), the first representation of @ is 
the collection of the s.i.'s 

~[/1 : ( f ih(I-  R2) - -  (fih -F (fihR 2 = (/7600 - -  (fi3k0 -at- (fiJk0" 

In P212121, (15) is satisfied, given u = (600), by both 
A* and A~', where 

1/2 0 0 

A~'= 0 1/2 0 

0 0 0 

Then, in addition to (21), 

h' = A~ u + ( I -  A~ A3) z (22) 

is a solution of the system u = h(l - Rn). From (22) 
one obtains h' = (300) + (00/) = (30l) where l is a free 
index. Then, according to (18), the pair of s.i.'s, 

¥/ I  : ~u  - -  (fih + (fihR 2 : ( / 7 6 0 0 -  ~3k0 -k- ~ J k 0 ,  

¥'¢rl : (fin - -  (ilh' -at- (fih' R 3 ~ (fi600 - -  (/)301 + (fiJ01, 

constitute the first representation of q~ provided k and l 
range over the integers. 
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In Pmmm, (15) is satisfied also by A*, where 

1/2 0 i l  
A~'= 0 0 . 

0 0 

Solving h" = A~' u + (I - A~ A 7 )  z gives h" = (3kl). 
Solutions obtained by means of the other rotation 
matrices are all subsets of h". Thus, according to (18), 
the s.i.'s 

~/,t = (0600-  (03kl .at- (03kl 

constitute the first representation of (0~o0 in Pmmm. 
Example 2. q~ = ~23 + (07~5 is a two-phase s.s. of 

the first rank in P2 v According to previous results, we 
can write cp = (0h_h2Ra -~- (0h2_hlRoj . Then, because of 
(13), the solution o~ the system 

h~ - -  h 2 Rp = u 1 

h 2 - -  h i R~ = u2 

is given by 

h l ( l -  R a R~) = u~ + u 2 Rp, h 2 ( l -  Rp R~) 
(23) 

= u 2 + u t Ra. 

According to (15), the system (23) has no solution 
when R~ R# = I. When R~ = I, Rp = R2, we obtain, 
according to (15) and (16), 

h I = A ~ ( U  x + u  2 8 2  ) + ( I - - A * A 2 ) z  

= (301) + ( 0 k 0 ) =  (3kl) ,  
(24) 

h 2 : A 2 ( u  2 + e l )  -I- ( I -  A* A2)z 

= (404) + ( 0 k 0 ) =  (4k4). 

Equations (18) reduce then to 

~V1 = (0123 -at- (0725 - -  (0Jki + (03kl, 

~r'/~ = (0725 ÷ (0123 - -  (04k4 ÷ (0~]kzt • 

The combination R ,  - -  R 2 ,  R/~ : I does not give further 
solutions. The first phasing shell is then 

{B} I = {RiE3, R725, R3kl, R4k4, g6oE, Rsos}, (25) 

where k is a free index. 
In P21212~, the two phases (0~3 and (0725 give rise to 

two s.s.'s of the first rank of type ~1 = (0u,- (0u~ = (0123 
+ ~725 and ~: = (0u, + (0u, = (]7123 -t- ~0q~ 5 which can be 
estimated independently because they do not have 
identical phasing shells. If (24) is applied to ~1, the 
same solution as in P21 is obtained. Therefore, (25) is 
the first phasing shell of (0123 ÷ (0725 in P212121 too. 

If (24) is applied to the pair [u I = (123), u 2 = ('7:25)], 
the following solutions arise: h I = (4ki),  h 2 = (3k4). 
The first representation of t02 is then, according to (18), 

~ = (012a + (07~s - (04k~ + (04kl, 

~ir/~ = (0"/25 -]" (0123-  (03k4 -t- (03kz]. 

The first phasing shell of ~ 2  is therefore 

{B }~ = {R ~23, R 725, R 3k4, g 4kl, Rs02, R60s }- 

Example 3. • = (0234 + (0ass is a two-phase s.s. in P i  
and in Pmmm. We apply (23) and (24) in P1 for R~ = 
I, Rp = R 2 = --I. As 

1/2 0 0 ] 

A * =  0 1/2 0 ,I 
0 0 1/2 

(24) gives h 1 -- (u I -- u2)/2 = (3 i2), h 2 = (u I + u2)/2 = 
(546). Then (18) leads to the first representation of ~ :  

~r'¢l = (0234 -I- (0~8 a t- (0312 "+" (0312' 

~T,¢~ : (0858 + (0234 - -  (0546-  (0546" 

The first phasing shell of q) is therefore 

{B}I  ---- {R234, R858, R312, R546, R624, R 10,8,12}. 

In Pmmm, (15) is satisfied when A ~  = A = (I -- Ra 
Rp) assumes the indices (1,2), (3,6), (4,7), (5,8). Then, 
according to (13) and (16), 

h 1 = A*,# (u I + u2 Rp) + (I -- A*.p Aa,#) z, 

h 2 = A~,~ (u 2 + u 1R~) ÷ (I -- A~,~ Ap.~) z. 

For the matrix involved A~,~ A~,# = I. The following 
results are obtained: 

A 1 . 2 : h  I - -  (3 i 2 ) ,  h 2 - -  ( 5 4 6 ) ;  

A 3 . 6 : h  1 = (542), h 2 = (316); 

A4.7:  h~ = (346), h 2 = ( 5 1 2 ) ;  

As. 8: hi = (5 i6), h 2 : (342). 

The first representation of cp is therefore the collection 
of the following eight s.i.'s: 

~'/1 = (/7234 q- (0858 -t- (0312 ÷ (0312, 

~t/~ = (0858 -t- (0234-  (0546-  (0546' 

~IW~ ' : (0234 q- (0858 - -  (0542 .at- (05z12, 

II.[lft 1 = (0858 + (0234 -- (0~16 + (0~i~, 

~,¢~V = (0234 _]_ (0858 - -  (0346 + (0346' 

~v = (0858 + (0234- (0512 + (0~i~, 

~1VI = (0234 .at- (0858 - -  (05i6 + (0~1¢~, 

~/VII = (0858 d- (0234 - -  (0342 + (034i" 

Lastly, the first phasing shell of ~ is 

{B} 1 = {R234, Rass, R312, R546, R624, 

R 10,8,12, R345, R512, R6,8,12, R 10,2,4, 

R516, R342, R 10,2,12, R684, R542, 

R316, R 10,8,4, R6,2,12 }. 
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Example 4. @ = 9., + 9u~ + 9., = 9123 "[- 9334 "1- 

96~5 is a s.s. of first rank in P2 v According to 
previous results, we can write @ = (fh -h a + (fh2-h,a~ + l 2 /3 
(fh,-h,a • Because of (13), the solution of the system 

hi -- hERp = ul, 

h 2 -- h 3 Ry = u 2, 

h 3 - -  h I R a  = U 3 

is given by 

h i ( l - -  Ra RyRp) = u 1 + uzR p + u3R~Rp, 

h2( l - -  RpR~Ry) = u 2 + u3Ry + u lRaRy , 

h a ( I -  RyRpR~) = u 3 + u 1R a + u2RpR a. 

According to (15) and (16) no solutions are obtained 
when R ,  Rp Rr = I. Therefore, only the combinations 

(a,fl, y) = (1,1,2) or (1,2,1) or (2,1,1) or (2,2,2) 

are useful. The following solutions arise for the various 
values of (a,fl, y): 

(a,fl, y)= (1,1,2), h 1 = ( i k l )  h 2 =  (:2k:2) h 3 = (5k6); 

= (1,2,1), h I = (4k3) h 2 =  (5k6) h 3 = (2k2); 

= (2,1,1), h I = (5k6) h2 = (4k3) h 3 = ( l k i ) ;  

= (2,2,2), h I = (2k2) h2 = ( / k l )  h 3 = (4k3). 

According to (18), the s.i.'s belonging to the first 
representation of @ are given, for fixed R,, Rp, Ry, by 

(flu, -}- (fuzR/;  -}- ( fu3RrRl ;  - -  ( fht  "~- (fh,  R,, ,RrR~, 

(fu2 -t- (fu~ R r "F (fu,  R o a~, - -  ( fh  2 -]" ( fh  2 a~  R,~a r, (26) 
(fu~ 4- (fu2 Ro "4- (fu2 R~ a, ,  - -  ( fh  3 -t- (fh3 a r  a/; R o. 

Specifying (26) for the useful combinations of ct, fl, y 
gives the first representation of @: 

~tr/1 : (f123 "+" (f334 "k- ( f ~  - -  ( f i k l  -1- ( f l k ] ,  

~ / ~  = (]9334 q- (f655 + ( f [23  - -  (f2k2. "k- ( f2k2 ,  

~¢~t : (f655 -+- (/7123 "+" ( f 3 3 4 -  (f5k6 "+" ( f5k6,  

¥1ttt 
1 : (f123 -b (fj33, + ( f ~  - -  (f,i, k j  + (f4k3" 

It is now a trivial task to write down the magnitudes in 
the first phasing shell (see Hauptman,  1977b, 1978; 
Hauptman & Potter, 1979 for an heuristic derivation). 

6 .  T h e  g e n e r a l i z e d  f irs t  p h a s i n g  s h e l l  

Let {B} 1 be the first phasing shell of the s.s. • defined 
by (1). We suppose that the linear combination of 
phases 

tl t 

q5' = ~. A i (ffh, (n' < n) 
i = 1  

be a s.s. whose first phasing shell is {B' }1. Then, @ -- 
@' is also a s.s. whose first phasing shell is denoted by 
{B" }1. If  @' and @ - @' are estimated via their first 
representations then @ is also evaluated. Because of the 
phase interrelationship principle stated in I (see §2), it is 
expected that the estimation of @ via the set theoretical 
union {B} 1 U {B'}I U {B"}I is, in the statistical sense, 
more accurate than that via {B }1 only. 

A first rank s.s. with r phases is estimated via one or 
more s.i.'s with r + 2 phases. Thus, a phase relationship 
of order N -1/2 is associated with the first-rank one- 
phase s.s.'s, a phase relationship of order N -1 is 
associated with the first-rank two-phase s.s.'s, etc. 

Suppose now that @, @', t / , -  @, are s.s.'s of first 
rank with 

n IIt 

r(r = ~ IAll), r'(r' = ~ IAil) and r -  r' 
i = 1  i = I  

phases respectively. The orders of the phase relation- 
ships associated with them are (x /N)  -r, 
(vTN) -r', (v/N) -(r-r'). According to §14 of I, 
@, @' and @ - @' constitute a tripole whose order with 
respect to @ is (v /N)  -r, which coincides with the order 
of  the phase relationship associated with @. It is 
concluded that the information contained in {B'} 1 U 
{B" }1 is of the same order as that contained in {B} r It 
is therefore useful to introduce the concept of 
generalized first phasing shell: 'Let ~,  ~ ' ,  @" . . . .  be a 
set of s.s.'s for which one or more sequences 

= @, + ~,, + . . .  

can be found. The set theoretical union 

i~}~= 1~}1 u 1~'}i u io"}, u ... 

is said to be the generalized first phasing shell of @ 
provided that @, @', ~ "  . . . .  constitute a multipole 
whose order with respect to @ is the same as that of the 
phase relationship associated with @. It is expected that 
the estimation of @ via {B }~ is more accurate in the 
statistical sense than via {B }r' 

We give two examples in order to clarify the 
statement. In P1 let • = (fh÷ k + ( fh-k .  The first 
phasing shell of @ is 

{B} 1 = {Rh+k, Rh_k, Rh, Rk, R2h, R2k}. 

If both 9h + k and 9h-  k are s.s., the multipole 

1 ~ =  ( f h + k  .at- ( f h - k  

~ t  _.~ ( fh  + k - -  ( f (h  + k)/2 - -  ( f (h  + k)/2 

(l-)tt = ( f h  - k - -  ( f ( h  - k ) / 2  - -  ( f ( h  - k ) / 2  

arises which is of order 1/N with respect to @. In 
conclusion, it is 

{B} g = {Rh + k, R h - k ,  Rh, Rk, R2h, R2k, R(h + k)/2,  R ( h - k ) / 2  }" 
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As a further example in P [  let qb = Oh + (ffk -t- (ffh + k + 21 ° 
The four s.i.'s (Giacovazzo,  1978b), 

I / /~  : (Ph -t- (Pk "]'- 2 q h -  ~Ph + k + 2,, 

t/./~' = --(Ph + (Pk + 2qTh + I - -  (Ph + k + 21, 

[I.IPtt 
1 = (Ph - -  (Pk - -  2qTk + I - -  (Ph + k + 21, 

kt/~ '' = --qTh -- qTk + 2qTh + k + I -- (Ph + k + 21' 

consti tute the first representat ion of ~ and 

{B} 1 = {Rh, Rk, Rh+ k + 2|, Ri, Rh+ |,Rk + |, 

R h + k + l, R h + k, R h-  k, R h + a, R k + 21, 

Rh + 2k + 21, R 2 h  + k + 21, R21, R2h + 21, R 2 k  + 21, 

R2h + 2k ÷ 21} 

is its first phas ing shell. 

(a) If  ~ '  = q~h + Ok is a s.s., the tripole 

¢ ~  ~h + ~k  + ~ h + k + 2 1  

~ '  = ~Ph + ~Pk 

¢ZD~" = (Ph + k + 21 - -  (P(h + k)/2 + I - -  (P(h + k)/2 + I 

arises which is of order  1/Nv/-N with respect to ~ .  
Since 

{B' }1 = {Rh,  R k ,  R ( h  + k)/2, R ( h -  k)/2, R h  ÷ k, R h -  k}, 

{Ott  }l = { R h + k + 21, R (h + k)/2 +l  }, 

then {B} g will contain,  besides the seventeen mag- 
nitudes in {B } 1, also R (h + k)/2, R (h- k/2, R (h ÷ U)/2 ÷ ~. 

(b) If  q~' = Oh + ~0h + k + 2~ is a s.s. then 

{O} g =  {B}  1 U { R h + k / 2 + l ,  R k / 2 + l ,  Rk /2} .  

(e) If  q~' = ~0k + ~0h + k + 21 is a s.s. then 

{B}]=  {B} IU {Rh/2+k+l, Rh/2+t, Rh/2}. 

(d) If  ~0h, ~0k, ~0h ÷ k + 2~ are s.s.'s, the condit ions (a), (b), 
(e) are s imultaneously fulfilled. Then,  

{B} g = {B} 1 U {Rh/2, Rk/2, R(h + k)/2 + ~, R(h + k)/2, 

R (h - k)/2, R h + k/2 + I, R k/2 + I, R hi2 + k + ~, R h/2 + I }" 

The concept  of a generalized first phasing shell is of  
minor importance when q~ is a s.i. In fact, in this case, 
it is not possible to find a sequence q~', ~ "  . . . .  such that  
the multipole ~/,, q~', ~/,", . . .  is of  the same order with 
respect to • as the phase relat ionships associated with 

unless q~', ~ " ,  . . .  are all s.i.'s. In this last case, 
however,  {B }4 - {B/v For  example,  

¢~ = (Ph --t- (Pk - -  (Ph + k --I- q)l + (Pm - -  ~l + m 

is a sextet invar iant  whose first phasing shell is 

{ B / I  ~ {Rh, Rk, Rh+k, RI, Rm, Rl+m, Rh+l, Rh+m, 

R h - I -  m, R k +  I, R k  + m, R k - I -  m, R h +  k - I ,  

R h + k - m ,  R h + k + l +  m, R h + l + m ,  

R k + l + m ,  R h + k + l .  R h + k + m ,  

R h + k - l - m ,  R h - I ,  R h - m ,  R k - I ,  R k - m  }. 

No addit ional  cross terms arise from the fact tha t  ~ = 
- -  I~ tl 

~ '  + ~ " ,  w h e r e  ~ '  = q)h -'1"- ~0 k q)h + k, : ~01 "j- (fire - -  

qh + m. For  a further example let us suppose that  ~ = Oh 
+ 0 k - - 0 h + k i s a s . i .  i n w h i c h ~ ' = 0 h +  Ok a n d S " =  
~0h + k are s.s.'s of  first rank.  The tripole 

= Oh + Ok-- (0h+ k 

~ t t  =~ (Ph + k 

is of  order  1IN 3/2 with respect to ~ .  It is concluded tha t  
the phase  information about  • arising from the 
seminvar iant  nature  of q~' and q~" is of  order 1/N 
higher than the order of the triplet relationship. In the 
same way,  the phase  informat ion about  • = tPh + ¢Pk + 
q~t -- tph + k + t arising from the seminvar iant  nature  of q~' 
= qgh + q~k, qb" _-- tp, -- tph + k ÷ , is  of order 1 /N 2, whereas  
q~ is a s.i. of  order 1/N. 

The following observat ion can enlarge further on the 
concept  of generalized first phasing shell: phase  
information about  a s.s ~ ,  with the same order as the 
order of ~ ,  may  be contained in the first phasing shell 
of  special s.i.'s, ~ ' .  For  example,  let q~ = q~h, + ~0h2 be a 
two-phase s.s. for a given space group. I f  

t~t : ( P h t  + (Ph, Rp + (Ph 2 + (Ph 2 Rq 

(with h l R  p 4 : - - h  t, h 2 Rq 4 : - - h  2) is a quartet ,  then its 
value equals 2q~ + a, where a is a cons tant  which arises 
because of  t ransla t ional  symmetry .  Since a is a known 
quant i ty ,  the value of  qb' can fix that  of ~ .  It is 
therefore justified to assume tha t  the generalized first 
phasing shell of  qb contains  also the magni tudes 
belonging to the first phasing shell of  the s.i. qb'. 

The procedure jus t  described generalizes a previous 
observat ion of H a u p t m a n  & Green (1978), who use 
quartets  such as q~' in P2~ in order to est imate ~ when 
q~ is a two-phase s.s. of  first rank.  In our approach,  
may  or may not be a s.s. 

We give now two numerical  examples in order to 
clarify the ideas described in this paragraph.  

Example 1. F rom example 2 of §5, the reader will 
easily verify that  the first representat ion of  ~ = ~0204 + 
~0606 in P21 is the collection of the s.i.'s 

~'gl "-- (0204 .at- (~606 - -  (ff2ki -~" (ffEkl' 

~-/2 = (/9606 + (P204 - -  (P4k5 + (P4k5, 

where k is a free index. Therefore,  the first phasing shell 
of  @ is 

{ B } I  = 1R204, R6o6,  R2kl, R4kg, R402,  R8,0,10 }. 

However ,  ~Ozo 4 and q)606 are themselves s.s.'s of first 
rank. Thus,  the generalized first phasing shell is given 
by 

{B}] : {R204, R606,  R2kl, R4kg, R402,  R8,0,10 , Rlk2, R3k3}.  
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Example 2. From example 2 of §5, • = ~123 ÷ (ff725 is 
a two-phase s.s. in P2 v Its first phasing shell is given by 
(25). As u 1R 2 4: --ut and u 2 R 2 4: --u 2, the quartet 

may be constructed whose first phasing shell contains 
the five magnitudes R 123, R725, Rsos, R040, R6o2" Then the 
generalized first phasing shell of • is 

{B}~ = { R  123, R 7 2 5 ,  R 3 k l ,  R 4 k 4 ,  R 6 0 2 ,  R 8 0 8 ,  R 0 4 0 } .  

7. A l g e b r a i c  p r o p e r t i e s  of s.s.'s of s e c o n d  r a n k  

A s.s. • = (p., + (pu, + ... + (pun for which system (5) 
does not exist is a s.s. of second rank• Then, according 
to (4), at least one vector h and suitable rotation 
matrices R~, R~, ..., Ry, Rp, Rq can be found such that 
the combination of phases 

~)t  = (Put R,7 ÷ (Pu 2 R,  ÷ " ' "  ÷ (Pu n R~, ÷ (phRp - -  (phRq (27) 

is a s.s. of first rank. Then, the same algebraic 
properties hold for O' as for the s.s.'s of first rank: in 
particular one or more systems such as 

h I -- h 2 R# = n 1 (28.1) 

h E - -  h 3 Ry = U 2 (28•2) 

h~_ 1 - h~ R~ = u~_ 1 (28.n -- 1) 

h ~ -  h~+ 1 R l = u~ (28.n) 

h~+ 1 -- h~+2 Ry = hRp (28.n + 1) 

h n +  2 - -  h I R a = --hRq (28.n + 2) 

exist for suitable values of the rotation matrices. We 
note that h is now a free vector under the condition that 
~ '  is a s.s. of first rank• The general expressions for the 
s.i.'s W~ E {~}1 can be derived from (28) in the same 
way as the s.i.'s (18) have been deduced from (5): 

(Pu t + (pu 2 R~ + ••"  + (Pu n R . . . R  r R~ ÷ (PhR r R, R . . .  Ry R~ 

(phRq R/R t R ' ' '  RzR ~ - -  ~Oh, + (Ph, RoRjRtR~.. .RrR a, 

(29.1) 

(P,,, R. Rj g, Ro... R~ + (pu, + (pu, R~ + "" + (Pun a . . .  Ry 

+ (PhR, R,a ...R~ --(PhRqRjR, Ro... a~ --(Ph, + (Ph, R~RoRjR, R ...R~, 
: (29.2) 

(Pu, R,~ ÷ (Pu 2 R a R a ÷ " ' "  ÷ (pu n Rv.. .  R a R,, 

+ (phRp R l R,,... R/; Ro, - -  (phSq - -  (ph,z+2 ÷ (phn+ 2 Rj R I R,, ... R a R,~ • 

(29.n + 2) 

In order to give an example let us deal with ~ = (pu, in 
space group P21212 r In this case, the system (28) 
reduces to 

h I -- h 2 R ~  = u I ( 3 0 . 1 )  

h E -- h 3 Rj = hRp (30.2) 

h a -- h I R, = --hR¢ (30.3) 

From (13), the solution of (30) satisfies 

h I (I -- R,  Rj R p) = u I + h(RpRp -- Rq Rj Rp), 

hE(I-- R p R ,  R j ) =  u~ R,  Rj + h(Rp-- Rq Rj), (31) 

h a (I -- Rj Rp Ra) = ux R,  + h(Rp Rp R , - -  Rq), 

where h is a free vector satisfying system (31). 
For every combination h, Rp, Rj, R,,Rp, Rq for which 

(31) holds the following W~'s arise: 

(Pu, ÷ (,0hap R a - -  (phRq R/R~. ÷ (,Oh, - -  (ph, a o Rj R a, 

(Pu, R o Rj ÷ (PhRp - -  (phSq Rj - -  ~/~h 2 ÷ (ph 2 Ra R ° R/' 

(pu, Ro ÷ (phRp R a R o - -  ~ h R q -  (ph 3 ÷ (ph 3 a j  Rt; R o" 

As a numerical example in P2~2121, let ~ = (]7246. It is 
easily seen that 

~ 2 4 6 -  (phk3 ÷ ~-h,k ,  3 

is a s.s. of first rank like (27). Then a quintet such as 
(29) can be constructed 

(P246 - -  ~hk3 + ~-h,k ,  3 --  ~ l - k ,  2,1 + ( p - l + h , - 2 , / "  

In a similar way the following quintets arise: 

(/9246 - -  ~hk3 ÷ (ph, - k ,  - 3  - -  (P 1, 2 - k, l ÷ (P-  1, 2 + k, l ,  

~246 - -  ~h2l ÷ ~-h , -2 ,  l - -  ( P l - h , k ,  3 ÷ (/9-1 + h , k , - 3 ,  

(P246 - -  ~h2l ÷ (Ph,-2,-I - -  (pl,  k, 3 - l  ÷ ( p - l , k , - 3  + l ,  

~0246 - -  ~Ikl + ~ - 1 ,  k, - t  - -  (ph, 2, 3 - l + ~h ,  - 2 ,  - 3  + l,  

~246 - -  (plkl ÷ ( P - I ,  - k ,  l - -  (ph, 2 - k, 3 + (ph, - 2  + k, - 3 "  

In conclusion, the first phasing shell of (P246 is given by 

{ B } I  = {Rhk3, RhEl, R l k l ,  REh,0 ,6 ,  R0 ,Ek ,6 ,  REh,4 ,0 ,  R0 ,4 ,2 l ,  

R 2,0,2l, RE,Ek,0 }, 

where h, k, l are free indices. 
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Abstract 

The ordered domain structure present in the a-phase 
Cu-A1 alloys investigated by Epperson, Ffirnrohr & 
Ortiz [Acta Cryst. (1978), A34, 667-681] is deter- 
mined by an extension of the computer method 
developed recently by Epperson [J. Appl. Cryst. 
(1979), 12, 351-356] for analyzing a Gehlen-Cohen 
type simulated structure for a binary, f.c.c., locally 
ordered alloy in terms of nearest-neighbor atomic 
configurations. The dominant ordered feature of the 
more concentrated of these alloys is the existence of 
randomly dispersed Boric-Sparks tetrahedra; that is, 
four nearest-neighbor A1 atom~ arranged tetrahedrally 
about a Cu atom. The majority of these tetrahedra are 
isolated; however, as many as three or four are 
occasionally found to be joined in fragments of a 
Cu3Au-type antiphase-shift structure. This extended 

* The experimental part of this work was carried out while the 
authors were at the Max-Planck-Institut ffir Metallforschung, 
Institut ffir Werkstoffwissenschaften, Stuttgart, Federal Republic of 
Germany. 

~" Work supported by the US Department of Energy. 
0567-7394/80/030372-07501.00 

ordered structure also incorporates the CuaAu-type 
ring configuration, another principal characteristic 
structural feature of these Cu-A1 alloys. As a typical 
example, a Cu-14.76 at.% A1 alloy quenched from 923 
K and annealed for 1580 h at 423 K was found to con- 
tain 87 such locally ordered regions in an 8000-atom 
model. Of these 'domains', 74 were isolated tetrahedra 
and the remainder consisted of pairs of tetrahedra 
joined such that their central atoms were mutual 
second-nearest neighbors. For this alloy and heat 
treatment, the locally ordered regions of this type 
amount to about 14 volume % of the microstructure 
and contain 32% of the A1 in the alloy. The average 
(spherical) domain size is only 3.4/~. Not only are the 
locally ordered regions very small, but there are also 
perceptible imperfections in the packing sequence. 

Introduction 

One of the principal goals of diffuse-scattering investi- 
gations of concentrated alloys has been that of under- 
standing locally ordered structures in terms of charac- 
© 1980 International Union of Crystallography 


